Design strategies for controlling damping in micromechanical and nanomechanical resonators

نویسندگان

  • Surabhi Joshi
  • Sherman Hung
  • Srikar Vengallatore
چکیده

Damping is a critical design parameter for miniaturized mechanical resonators used in microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), optomechanical systems, and atomic force microscopy for a large and diverse set of applications ranging from sensing, timing, and signal processing to precision measurements for fundamental studies of materials science and quantum mechanics. This paper presents an overview of recent advances in damping from the viewpoint of device design. The primary goal is to collect and organize methods, tools, and techniques for the rational and effective control of linear damping in miniaturized mechanical resonators. After reviewing some fundamental links between dynamics and dissipation for systems with small linear damping, we explore the space of design and operating parameters for micromechanical and nanomechanical resonators; classify the mechanisms of dissipation into fluid–structure interactions (viscous damping, squeezed-film damping, and acoustic radiation), boundary damping (stress-wave radiation, microsliding, and viscoelasticity), and material damping (thermoelastic damping, dissipation mediated by phonons and electrons, and internal friction due to crystallographic defects); discuss strategies for minimizing each source using a combination of models for dissipation and measurements of material properties; and formulate design principles for low-loss micromechanical and nanomechanical resonators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low Dissipation Superfluid Micromechanical Resonator

Micro and nanomechanical resonators with ultra-low dissipation have great potential as useful quantum resources. The superfluid micromechanical resonators presented here possess several advantageous characteristics: straightforward thermalization, dissipationless flow, and in situ tunability. We identify and quantitatively model the various dissipation mechanisms in two resonators, one fabricat...

متن کامل

Design and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array

In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...

متن کامل

Phonon Tunneling Loss Solver for Micro- and Nanomechanical Resonators

Microand nanoscale mechanical resonators have emerged as ubiquitous devices for application in a wide range of technical disciplines including communications, sensing, metrology, and fundamental scientific endeavors. In many instances the performance of these devices is limited by the deleterious effects of mechanical damping. To further compound this limitation, the quantitative understanding ...

متن کامل

Optically induced strong intermodal coupling in mechanical resonators at room temperature

Articles you may be interested in Pressure-sensing based on photothermally coupled operation of micromechanical beam resonator Appl. Study of laser-induced self-oscillations in silicon nanomechanical resonators

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014